Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применяется в том случае, когда вы не можете записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда вам дано рациональное уравнение с 3 или более дробями (в случае двух дробей лучше применить умножение крест-накрест).

  • Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ – это наименьшее число, которое делится нацело на каждый знаменатель.

    • Иногда НОЗ – очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
    • Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x - 3)/9, то НОЗ = 8*9 = 72.
    • Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и тоже число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).

    • Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
    • Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
  • Найдите х. Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.

    • В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить 2 дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
    • В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x - 3 + 2x -2, или 15х = х - 5. Решите и получите: х = -5/14.
  • Уравнение» мы ввели выше в § 7. Сначала напомним, что такое рациональное выражение. Это - алгебраическое выражение, составленное из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

    Если r(х) - рациональное выражение, то уравнение r(х) = 0 называют рациональным уравнением.

    Впрочем, на практике удобнее пользоваться несколько более широким толкованием термина «рациональное уравнение»: это уравнение вида h(x) = q(x), где h(x) и q(x) - рациональные выражения.

    До сих пор мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований и рассуждений сводилось к линейному уравнению . Теперь наши возможности значительно больше: мы сумеем решить рациональное уравнение, которое сводится не только к линейно-
    му, но и к квадратному уравнению.

    Напомним, как мы решали рациональные уравнения раньше, и попробуем сформулировать алгоритм решения.

    Пример 1. Решить уравнение

    Решение. Перепишем уравнение в виде

    При этом, как обычно, мы пользуемся тем, что равенства А = В и А - В = 0 выражают одну и ту же зависимость между А и В. Это и позволило нам перенести член в левую часть уравнения с противоположным знаком.

    Выполним преобразования левой части уравнения. Имеем


    Вспомним условия равенства дроби нулю: тогда, и только тогда, когда одновременно выполняются два соотношения:

    1) числитель дроби равен нулю (а = 0); 2) знаменатель дроби отличен от нуля ).
    Приравняв нулю числитель дроби в левой части уравнения (1), получим

    Осталось проверить выполнение второго указанного выше условия. Соотношение означает для уравнения (1), что . Значения х 1 = 2 и х 2 = 0,6 указанным соотношениям удовлетворяют и потому служат корнями уравнения (1), а вместе с тем и корнями заданного уравнения.

    1) Преобразуем уравнение к виду

    2) Выполним преобразования левой части этого уравнения:

    (одновременно изменили знаки в числителе и
    дроби).
    Таким образом, заданное уравнение принимает вид

    3) Решим уравнение х 2 - 6x + 8 = 0. Находим

    4) Для найденных значений проверим выполнение условия . Число 4 этому условию удовлетворяет, а число 2 - нет. Значит, 4 - корень заданного уравнения, а 2 - посторонний корень.
    О т в е т: 4.

    2. Решение рациональных уравнений методом введения новой переменной

    Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

    Пример 3. Решить уравнение х 4 + х 2 - 20 = 0.

    Решение. Введем новую переменную у = х 2 . Так как х 4 = (х 2) 2 = у 2 , то заданное уравнение можно переписать в виде

    у 2 + у - 20 = 0.

    Это - квадратное уравнение, корни которого найдем, используя известные формулы ; получим у 1 = 4, у 2 = - 5.
    Но у = х 2 , значит, задача свелась к решению двух уравнений:
    x 2 =4; х 2 =-5.

    Из первого уравнения находим второе уравнение не имеет корней.
    Ответ: .
    Уравнение вида ах 4 + bx 2 +c = 0 называют биквадратным уравнением («би» - два, т. е. как бы «дважды квадратное» уравнение). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х 2 , решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

    Пример 4. Решить уравнение

    Решение. Заметим, что здесь дважды встречается одно и то же выражение х 2 + Зх. Значит, имеет смысл ввести новую переменную у = х 2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной - и запись упроща
    ется, и структура уравнения становится более ясной):

    А теперь воспользуемся алгоритмом решения рационального уравнения.

    1) Перенесем все члены уравнения в одну часть:

    = 0
    2) Преобразуем левую часть уравнения

    Итак, мы преобразовали заданное уравнение к виду


    3) Из уравнения - 7у 2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

    4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1). Оба корня этому условию удовлетворяют.
    Итак, квадратное уравнение относительно новой переменной у решено:
    Поскольку у = х 2 + Зх, а у, как мы установили, принимает два значения: 4 и , - нам еще предстоит решить два уравнения: х 2 + Зх = 4; х 2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения - числа

    В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.

    Пример 5. Решить уравнение
    х(х- 1)(x-2)(x-3) = 24.
    Решение. Имеем
    х(х - 3) = х 2 - 3х;
    (х - 1)(x - 2) = x 2 -Зx+2.

    Значит, заданное уравнение можно переписать в виде

    (x 2 - 3x)(x 2 + 3x + 2) = 24

    Вот теперь новая переменная «проявилась»: у = х 2 - Зх.

    С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у 2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

    Возвращаясь к исходной переменной х, получаем два уравнения х 2 - Зх = 4 и х 2 - Зх = - 6. Из первого уравнения находим х 1 = 4, х 2 = - 1; второе уравнение не имеет корней.

    О т в е т: 4, - 1.

    Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

    Рассмотрим уравнение с двумя переменными

    Пара значений переменных, обращающая уравнение с двумя переменными в верное равенство, называется решением уравнения. Если дано уравнение с двумя переменными х и у, то принято в записи его решения на первое место ставить значение переменной на второе - значение у.

    Так, пары являются решениями уравнения то же время пара (1; 5) решением уравнения не является.

    Это уравнение имеет и другие решения. Для их отыскания удобно выразить одну переменную через другую, например х через у у получив уравнение . Выбрав произвольное значение у, вычислим соответствующее значение х. Например, если то значит, пара (31; 7) является решением уравнения; если то значит, пара (4; -2) также является решением заданного уравнения и т. д.

    Уравнения с двумя переменными называются равносильными, если они имеют одни и те же решения.

    Для уравнений с двумя переменными справедливы теоремы 5.1 и 5.2 (см. п. 135) о равносильных преобразованиях уравнения.

    В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

    Какое уравнение будет называться уравнением с двумя переменными?

    Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

    Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

    Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

    Уравнение с двумя неизвестными может:

    а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

    б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

    в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

    г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

    Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

    Разложение на множители

    Пример 1.

    Решить уравнение: xy – 2 = 2x – y.

    Решение.

    Группируем слагаемые с целью разложения на множители:

    (xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

    y(x + 1) – 2(x + 1) = 0;

    (x + 1)(y – 2) = 0. Имеем:

    y = 2, x – любое действительное число или x = -1, y – любое действительное число.

    Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

    Равенство нулю неотрицательных чисел

    Пример 2.

    Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

    Решение.

    Группируем:

    (9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

    (3x – 2) 2 + (2y – 3) 2 = 0.

    Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

    А значит, x = 2/3 и y = 3/2.

    Ответ: (2/3; 3/2).

    Оценочный метод

    Пример 3.

    Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

    Решение.

    В каждой скобке выделим полный квадрат:

    ((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

    (x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

    (x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

    Ответ: (-1; 2).

    Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

    Пример 4.

    Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

    Решение.

    Решим уравнение как квадратное относительно x. Найдем дискриминант:

    D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

    Ответ: (3; 4).

    Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

    Пример 5.

    Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

    Решение.

    Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

    Ответ: нет корней.

    Пример 6.

    Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

    Решение.

    Выделим полные квадраты в каждой скобке:

    ((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

    Ответ: (2; -3) и (-2; -3).

    Пример 7.

    Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
    x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

    Решение.

    Выделим полные квадраты:

    (x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

    (x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

    (x – y) 2 = 36 и (y + 2) 2 = 1

    (x – y) 2 = 1 и (y + 2) 2 = 36.

    Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

    Ответ: -17.

    Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

    Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Конспект урока по математике

    на тему:

    « Рациональные уравнения с двумя переменными.

    Основные понятия ».

    Подготовила:

    Учитель математики

    МБОУ СОШ №2

    Борщова Е. С.

    Павловский Посад

    Тип урока : изучение нового материала.

    Тема урока : рациональные уравнения с двумя переменными. Основные понятия.

    Цели :

      ввести основные понятия и термины темы;

      развивать математическую речь и мышление учащихся.

    Оборудование: доска для записей, проектор, экран, презентация.

      Организационный момент. (2 – 3 мин.)

    (1 слайд)

    Здравствуйте, ребята, присаживайтесь! Сегодня мы с вами рассмотрим новую, достаточно интересную тему, которая станет залогом к успешному усвоению будущего материала. Открываем рабочие тетради, записываем число, сегодня 16 октября, классная работа и тему урока: «Рациональные уравнения с двумя переменными. Основные понятия». (учитель тоже самое записывает на доске)

    II . Актуализация знаний. (5 мин.)

    (2 слайд)

    Для того, чтобы начать изучение новой темы нам необходимо вспомнить некоторый материал, который вы уже знаете. Итак, вспомним элементарные функции и их графики:

    1. График линейной функции

    2. Парабола. График квадратичной функции , (а ≠ 0)

    Рассмотрим канонический случай:

    3. Кубическая парабола

    Кубическая парабола задается функцией

    4. График гиперболы

    Опять же вспоминаем тривиальную гиперболу

    Очень хорошо!

    III . Изучение нового материала (сопровождается презентацией). (35 мин.)

    (3 слайд)

    На предыдущих уроках вы выучили определение рационального уравнения с одной переменной, и сейчас мы говорим, что оно очень схоже с определением рационального уравнения с двумя переменными:

    Его записывать не нужно, оно есть в ваших учебниках, еще раз прочитаете его дома и выучите!

    А в тетради запишите примеры:

    Далее можно сказать, что рациональное уравнение вида h(x; y) = g(x; y) всегда можно преобразовать к виду p(x; y) = 0, где p(x; y) = 0 – рациональное выражение. Для этого нужно переписать выражение так: h (x ; y ) - g (x ; y ) = 0, т. е. p (x ; y ) = 0. последние два равенства запишите себе в тетради!

    (4 слайд)

    Следующее определение внимательно слушаем и запоминаем, записывать его не нужно!

    А в тетради запишите только примеры:

    (5 слайд)

    Решим такое уравнение (учащиеся записывают решение в тетради, учитель комментирует каждый шаг решения, параллельно отвечая на вопросы детей):

    (6 слайд)

    Следующее определение, это определение равносильности двух уравнение, его вы тоже уже знаете из предыдущих параграфов, поэтому просто смотрим и слушаем:

    Теперь давайте вспомним, какие вы знаете равносильные преобразования:

      Перенос членов уравнения из одной части в другую с противоположными знаками (примеры на доске, их можете не записывать, кто хочет – запишите);

      Умножение или деление обеих частей уравнения на одно и тоже число отличное от нуля или (еще мы знаем) на выражение, всюду отличное от нуля (обратите на это внимание!); (примеры кому нужно запишите).

    А какие вы знаете неравносильные преобразования?

    1) освобождение от знаменателей, содержащих переменные;

    2) возведение обеих частей уравнения в квадрат.

    Прекрасно!

    (7 слайд)

    Следующее понятие, которое мы сегодня рассмотрим, записываем – формула расстояния между двумя точками.

    Пишите:

    (учащиеся обе теоремы записывают себе в тетради)

    Этот рисунок перерисовываем в тетради, подписываем оси координат, центр окружности, отмечаем радиус.

    Есть ли у вас какие-то вопросы? (если вопросов нет, продолжаем работу)

    (8 слайд)

    Рассмотрим примеры, записывайте:

    (рис. к П1)
    (рис. к П2)

    Дети постепенно, исходя их выше записанной теоремы, отвечая на вопросы учителя, самостоятельно решают, записывают решение в тетради, рисунки перерисовывают.

    Молодцы! А сейчас, перерисуйте себе такую таблицу, она станет хорошим помощником в дальнейшем при решении задач.

    (9 слайд)

    Учащиеся аккуратно, каждый в своих тетрадях рисует данную таблицу и заносит в нее данные.

    V. Домашнее задание (2 – 3 мин.).

    (10 слайд)

    До конца урока осталось 2 минуты, открываем дневники, записываем домашнее задание:

    1) Глава 2, §5;

    2) стр. 71 вопросы для самопроверки;

    3) № 5.1; № 5.3 (а, б); № 5.7.

    Самоанализ.

    Начало урока было достаточно доброжелательным, искренним, открытым и организованным. Класс к уроку был подготовлен. Дети в течение всего урока показывали хорошую работоспособность.

    Мною сразу были озвучены цели урока. Цели, предложенные детям на урок, соответствовали программным требованиям, содержанию материала.

    В начале урока, в качестве активизации познавательной деятельности, детям было предложено вспомнить некоторый материал по ранее изученному материалу, с чем они справились без каких-либо особых затруднений.

    Содержание урока соответствовало требованиям образовательного стандарта.

    Структура урока предложена выше. На мой взгляд, целям и типу урока она соответствует. Этапы урока были логически связаны, плавно переходили один в другой. На каждом из этапов подводились итоги. Время распределялось на отдельные этапы по-разному в зависимости от того, какой из них являлся основным. На мой взгляд, оно было распределено рационально. Начало и конец урока были организованными. Темп ведения урока был оптимальным.

    После первого этапа актуализации знаний шел основной этап урока – объяснение нового материала. Этот этап был главным, поэтому основное время было уделено именно ему.

    Изложение нового материала было логичным, грамотным, на высоком теоретическом и одновременно доступном для детей уровне. Главные мысли по теме всегда мной выделялись и записывались учащимися в рабочие тетради.

    Изучение нового материала было проведено в форме небольшой лекции с выполнением элементарных практических заданий, для наиболее быстрого и правильного усвоения материала.

    Мною была выполнена презентация в программе PowerPoint. Презентация имела в основном вспомогательную функцию.

    С целью контроля усвоения знаний на протяжении всего урока учащиеся решали задачи, по результатам чего я могла судить о степени усвоения теоретического материала каждым из детей. После проведения контроля знаний учителем была проведена коррекционная работа. Те вопросы, которые вызвали у учащихся наибольшее затруднение, были рассмотрены еще раз.

    После этого был подведен итог урока и ученикам предложено домашнее задание. Домашнее задание было закрепляющего, развивающего характера. На мой взгляд, оно было посильно для всех детей.

    Содержание урока было оптимальным, методы обучения – устный, наглядный и практический. Форма работы – беседа. Я использовала приемы активизации познавательной деятельности – это постановка проблемных вопросов, обобщение по планам обобщенного характера.

    Учащиеся на уроке были активными. Они показали умение продуктивно работать, делать выводы по увиденному, умение анализировать и обобщать свои знания. Также дети показали наличие навыков самоконтроля, но лишь единицы были неусидчивы, и им уделялось наибольшее внимание с моей стороны.

    Класс к уроку был подготовлен.

    Я считаю, что цели поставленные в начале урока достигнуты.