лабораторные работы

практические занятия

самостоятельная аудиторная работа

самостоятельная домашняя работа (типовой расчет)

контроль (защиты, коллоквиумы, зачет, экзамен)

Учебники и учебные пособия

Н.В.Коровин. Общая химия

Курс общей химии. Теория и задачи (под ред. Н.В.Коровина, Б.И.Адамсона)

Н.В.Коровин и др. Лабораторные работы по химии

Календарный план

Электролиты,

Хим.эквива

гидролиз, ПР

Электр.форму-

13(2 )

ГЭ, электролиз,

27(13,16)

14(2 )

коррозия

Квант.числа

17(2 )

18(2 )

Хим.связь

Комплексы

Термодинамика

Кинетика.

6(2,3 )

Равновесие

Введение в курс химии

Химия в энергетическом институте – фундаментальная общетеоретическая дисциплина.

Химия – естественная наука, изучающая состав, строение, свойства и превращения веществ, а также явления, сопровождающие эти превращения.

М.В.Ломоносов

Д.И.Менделеев

“Химическая

“Основах химии” 1871

рассматривает

свойства

г.) – “Химия –

изменения

учение об элементах и

объясняет

их соединениях”.

химических

превращениях происходит”.

«Золотой век химии» (конец XIX начало XX веков)

Периодический закон Д.И.Менделеева (1896)

Понятие о валентности введенное Э.Франкландом (1853)

Теория строения органических соединений А.М.Бутлерова (1861-1863)

Теория комплексных соединений А.Вернера

Закон действующих масс М.Гультберга и Л.Вааге

Термохимия, разработанная в основном Г.И.Гессом

Теория электролитической диссоциации С. Аррениуса

Принцип подвижного равновесия А.Ле Шателье

Правило фаз Дж.В.Гиббса

Теория сложного строения атома Бора-Зоммерфельда (1913-1916)

Значение современного этапа развития химии

Понимание законов химии и их применение позволяет создавать новые процессы, машины, установки и приборы.

Получение электроэнергии, топлива, металлов, различных материалов, продуктов питания и т.п. непосредственно связано с химическими реакциями. Например, электрическую и механическую энергии в настоящее время в основном получают преобразованием химической энергии природного топлива (реакции горения, взаимодействия воды и ее примесей с металлами и т.п.). Без понимания этих процессов невозможно обеспечить эффективную работу электростанций и двигателей внутреннего сгорания.

Познание химии необходимо для:

- формирования научного мировоззрения,

- для развития образного мышления,

- творческого роста будущих специалистов.

Современный этап развития химии характеризуется широким использованием квантовой (волновой) механики для интерпретации и расчета химических параметров веществ и систем веществ и основан на квантово-механической модели строения атома.

Атом - сложная электромагнитная микросистема, являющаяся носителем свойств химического элемента.

СТРОЕНИЕ АТОМА

Изотопы – разновидности атомов одного химического

элемента, имеющие одинаковый порядковый номер, но разные атомные числа

Мr (Cl)=35*0,7543 + 37*0,2457 = 35,491

Основные положения квантовой механики

Квантовая механика - поведение движущихся микрообъектов (в том числе и электронов) – это

одновременное проявление, как свойств частиц, так и свойств волн – двойственная (корпускулярноволновая) природа.

Квантование энергии: Макс Планк (1900 г., Германия) –

вещества испускают и поглощают энергию дискретными порциями (квантами). Энергия кванта пропорциональна частоте излучения (колебания) ν :

h – постоянная Планка (6,626·10-34 Дж·с); ν=с/λ , с – скорость света, λ – длина волны

Альберт Эйнштейн (1905 г.) : любое излучение - это поток квантов энергии (фотонов) E = m· v 2

Луи де Бройль (1924 г., Франция): электрон также характеризуется корпускулярно-волновой двойственностью - излучение распространяется как волна и состоит из мелких частиц (фотонов)

Частица – m,

mv , E =mv 2

Волна - ,

E 2 = h = hv /

Связал длину волны с массой и скоростью:

Е1 = Е2 ;

H/ mv

неопределенности

Вернер Гейзенберг (1927г.,

Германия)

произведение

неопределенностей

положения

(координаты)

частицы х и

импульса (mv) не

может быть

меньше h/2

х (mv) h/2 (- погрешность, неопределенность) Т.е. положение и импульс движения частицы принципиально невозможно определить в любой момент времени с абсолютной точностью.

Электронное облако Атомная орбиталь (АО)

Т.о. точное нахождение частицы (электрона) заменяется понятием статистической вероятности нахождения ее в определенном объеме (около ядерного) пространства.

Движение е- имеет волновой характер и описывается

2 dv - плотность вероятности нахождения е- в определенном объеме около ядерного пространства. Это пространство называется атомной орбиталью (АО) .

В 1926 г Шредингер предложил уравнение, которое математически описывает состояние е - в атоме. Решая его

находят волновую функцию . В простом случае она зависит от 3-х координат

Электрон несет отрицательный заряд, его орбиталь представляет собой определенное распределение заряда и называется электронное облако

КВАНТОВЫЕ ЧИСЛА

Введены для характеристики положения электрона в атоме в соответствии с уравнением Шредингера

1. Главное квантовое число (n )

Определяет энергию электрона - энергетический уровень

показывает размер электронного облака (орбитали)

принимает значения – от 1 до

n (номер энергетического уровня): 1 2 3 4 и т.д.

2. Орбитальное квантовое число (l ) :

определяет – орбитальный момент количества движения электрона

показывает – форму орбитали

принимает значения – от 0 до (n -1)

Графически АО изображается Орбитальное квантовое число: 0 1 2 3 4

Энергетический подуровень: s p d f g

Е увеличивается

l =0

s –подуровень s –АО

p- подуровень р -АО

Каждому n соответствует определенное число значений l , т.е. каждый энергетический уровень расщепляется на подуровни. Число подуровней равно номеру уровня.

1-ый энерг.уровень → 1 подуровень → 1s 2-ой энерг.уровень → 2 подуровня → 2s2p 3-ий энерг.уровень → 3 подуровня → 3s 3p 3d

4-ый энерг.уровень → 4 подуровня → 4s 4p 4d 4f и т.д.

3. Магнитное квантовое число (m l )

определяет – значение проекции орбитального момента количества движения электрона на произвольно выделенную ось

показывает – пространственную ориентацию АО

принимает значения – от –l до + l

Любому значению l соответствует (2l +1) значений магнитного квантового числа, т.е. (2l +1) возможных расположений электронного облака данного типа в пространстве.

s - состояние – одна орбиталь (2 0+1=1) - m l = 0, т.к. l = 0

p - состояние – три орбитали (2 1+1=3)

m l : +1 0 -1, т.к. l =1

ml =+1

m l =0

m l = -1

Все орбитали, принадлежащие одному подуровню, имеют одинаковую энергию и называются вырожденными.

Вывод: АО характеризуется определенным набором n, l, m l , т.е. определенными размерами, формой и ориентацией в пространстве.

4. Cпиновое квантовое число (m s )

«спин» - «веретено»

определяет - собственный механический момент электрона, связанный с вращением его вокруг своей оси

принимает значения – (-1/2· h/2) или (+1/2· h/2)

n = 3

l = 1

m l = -1, 0, +1

m s = + 1/2

Принципы и правила

Электронные конфигурации атомов

(в виде формул электронных конфигураций)

Указывают цифрами номер энергетического уровня

Указывают буквами энергетический подуровень (s, p, d, f );

Показатель степени подуровня означает число

электронов на данном подуровне

19 К 1s2 2s2 2p 6 3s 2 3p 6 4s 1

минимальной

Электроны в атоме занимают наиболее низкое энергетическое состояние, отвечающее наиболее устойчивому его состоянию.

1s 2s 2 p 3 s 3 p 3 d 4 s 4 p 4 d 4 f

Увеличение Е

Клечковского

Электроны размещаются последовательно на орбиталях, характеризуемых возрастанием суммы главного и орбитального квантовых чисел (n+l) ; при одинаковых значениях этой суммы раньше заполняется орбиталь с меньшим значением главного квантового числа n

1 s <2 s < 2 p = 3 s < 3 p = 4 s < 3 d = 4 p и т. д

Как известно, все материальное во Вселенной состоит из атомов. Атом – это мельчайшая единица материи, которая несет в себе ее свойства. В свою очередь, структура атома складывается из волшебного триединства микрочастиц: протонов, нейтронов и электронов.

При этом каждая из микрочастиц универсальна. То есть, не найти на свете двух разных протонов, нейтронов или электронов. Все они абсолютно друг на друга похожи. И свойства атома будут зависеть только от количественного состава этих микрочастиц в общем строении атома.

Например, структура атома водорода состоит из одного протона и одного электрона. Следующий по сложности, атом гелия состоит из двух протонов, двух нейтронов и двух электронов. Атом лития - из трех протонов, четырех нейтронов и трех электронов и т. д.

Структура атомов (слева направо): водорода, гелия, лития

Атомы соединяются в молекулы, а молекулы - в вещества, минералы и организмы. Молекула ДНК, являющаяся основой всего живого – структура, собранная из тех же трех волшебных кирпичиков мироздания, что и камень, лежащий на дороге. Хотя эта структура и намного более сложная.

Еще более удивительные факты открываются тогда, когда мы пытаемся поближе рассмотреть пропорции и строение атомной системы. Известно, что атом состоит из ядра и электронов, двигающихся вокруг него по траектории, описывающей сферу. То есть это даже нельзя назвать движением в обычном понимании этого слова. Электрон скорее находится везде и сразу в пределах этой сферы, создавая вокруг ядра электронное облако и формируя электромагнитное поле.


Схематические изображения строения атома

Ядро атома состоит из протонов и нейтронов, и в нем сосредоточена почти вся масса системы. Но при этом, само ядро настолько мало, что если увеличить его радиус до масштаба в 1 см, то радиус всей структуры атома достигнет сотни метров. Таким образом, все, что мы воспринимаем как плотную материю, более чем на 99% состоит из одних только энергетических связей между физическими частицами и менее чем 1% - из самих физических форм.

Но что представляют собой эти физические формы? Из чего они состоят, и насколько они материальны? Чтобы ответить на эти вопросы, давайте подробнее рассмотрим структуры протонов, нейтронов и электронов. Итак, мы спускаемся еще на одну ступеньку в глубины микромира – на уровень субатомных частиц.

Из чего состоит электрон

Самая маленькая частица атома – электрон. Электрон обладает массой, но при этом не обладает объемом. В научном представлении электрон не из чего не состоит, а представляет собой бесструктурную точку.

Под микроскопом электрон невозможно увидеть. Он наблюдаем только в виде электронного облака, которое выглядит как размытая сфера вокруг атомного ядра. При этом с точностью, где находится электрон в момент времени, невозможно сказать. Приборы же способны запечатлеть не саму частицу, а только лишь ее энергетический след. Суть электрона не вкладывается в представления о материи. Он скорее подобен некой пустой форме, существующей только в движении и за счет движения.


Никакой структуры в электроне до сих пор не было обнаружено. Он является такой же точечной частицей, как и квант энергии. Фактически, электрон - и есть энергия, однако, это более устойчивая ее форма, нежели та, которая представлена фотонами света.

В настоящий момент электрон считают неделимым. Это понятно, ведь невозможно разделить то, что не имеет объема. Однако в теории уже есть наработки, согласно которым в составе электрона лежит триединство таких квазичастиц как:

  • Орбитон – содержит информацию об орбитальном положении электрона;
  • Спинон – ответственен за спин или вращательный момент;
  • Холон – несет информацию о заряде электрона.

Впрочем, как видим, квазичастицы с материей уже не имеют абсолютно ничего общего, и несут в себе одну только информацию.


Фотографии атомов разных веществ в электронный микроскоп

Интересно, что электрон может поглощать кванты энергии, например, света или тепла. В этом случае атом переходит на новый энергетический уровень, а границы электронного облака расширяются. Бывает и такое, что энергия, поглощаемая электроном настолько велика, что он может выскочить из системы атома, и далее продолжить свое движение как независимая частица. При этом он ведет себя подобно фотону света, то есть, он будто бы перестает быть частицей и начинает проявлять свойства волны. Это было доказано в эксперименте.

Эксперимент Юнга

В ходе эксперимента на экран с двумя прорезанными в нем щелями был направлен поток электронов. Проходя через эти прорези, электроны сталкивались с поверхностью еще одного – проекционного – экрана, оставляя на нем свой след. В результате такой «бомбардировки» электронами на проекционном экране появлялась интерференционная картина, подобная той, которая появилась бы, если бы через две прорези проходили бы волны, но не частицы.

Такой рисунок возникает из-за того, что волна, проходя между двух щелей, делится на две волны. В результате дальнейшего движения волны накладываются друг на друга, и на некоторых участках происходит их взаимное гашение. В результате мы получаем много полос на проекционном экране, вместо одной, как это было бы, если бы электрон вел себя как частица.


Структура ядра атома: протоны и нейтроны

Протоны и нейтроны составляют ядро атома. И притом, что в общем объеме ядро занимает менее 1%, именно в этой структуре сосредоточена почти вся масса системы. А вот на счет структуры протонов и нейтронов физики разделились во мнениях, и на данный момент существует сразу две теории.

  • Теория №1 - Стандартная

Стандартная модель говорит о том, что протоны и нейтроны состоят из трех кварков, соединенных между собой облаком глюонов. Кварки являются точечными частицами, так же, как кванты и электроны. А глюоны – это виртуальные частицы, обеспечивающие взаимодействие кварков. Однако в природе так и не было найдено ни кварков, ни глюонов, потому эта модель поддается жестокой критике.

  • Теория №2 - Альтернативная

А вот по альтернативной теории единого поля, разработанной Эйнштейном, протон, как и нейтрон, как и любой другая частица физического мира, представляет собой вращающееся со скоростью света электромагнитное поле.


Электромагнитные поля человека и планеты

Каковы же принципы строения атома?

Все в мире – тонкое и плотное, жидкое, твердое и газообразное – это лишь энергетические состояния бесчисленных полей, пронизывающих пространство Вселенной. Чем выше уровень энергии в поле, тем оно тоньше и менее уловимо. Чем ниже энергетический уровень, тем оно более устойчивое и ощутимое. В структуре атома, как и в структуре любой другой единицы Вселенной, лежит взаимодействие таких полей – разных по энергетической плотности. Выходит, а материя – только иллюзия ума.

Тема – 1: Строение атома. Заряд ядра, порядковый номер и масса атома.

Студент должен:

Знать:

· Современную формулировку периодического закона и строение таблицы

Уметь:

· Определять элементы по описанным свойствам, определять элемент по электронной формуле.

· Устанавливать по порядковому номеру элемента номер периода и номер группы, в которых он находится, а также формулы и характер высшего оксида и соответсующего ему гидрооксида.

· Записывать электронную формулу данного элемента и сравнивать с окружающими его элементами в периоде и группе.

1.1. Порядковый номер химического элемента и значение заряда ядра его атома. Изотопы

Классифицируя химические элементы, использовал два их признака: а) относительную атомную массу б) свойства простых веществ и соединений элементов.

Первый признак – ведущий, второй – проявляется связанно с первым: свойства элементов изменяются периодически с возрастанием относительной атомной массы.

Но при построении периодической системы, располагая химические элементы по возрастанию относительной атомной массы, в некоторых местах нарушил это правило: поменял кобальт и никель, теллур и йод. Позднее так же пришлось поступить еще с двумя парами химических элементов: аргон – калий и торий – протактиний. Ведь активный щелочной метал калий нельзя включить в семейство химически устойчивых инертных газов, которые или вовсе не образуют химических соединений (гелий, неон), или вступают в реакции с трудом.

не мог объяснить эти исключения из общего правила, так же, как и причину периодичности в изменении свойств химических элементов, расположенных по возрастанию относительной атомной массы.

В XX в. Ученые установили, что атом состоит из ядра и движущихся около него электронов. Движущиеся вокруг ядра электроны образуют электронную оболочку атома. Атом – электро – нейтральная частица, т. е. не имеющая заряда. Ядро же заряжено положительно, и его заряд нейтрализуется суммарным отрицательным зарядом всех электронов в атоме. Например, если ядро атома имеет заряд +4, то вокруг него движутся четыре электрона, каждый из которых имеет заряд, равный -1.

Экспериментально было установлено, что порядковые номера элементов в периодической системе совпадают со значениями зарядов ядер их атомов. Заряд ядра атома водорода равен +1, гелия +2, лития +3 ит. д. Положительный заряд атома у каждого последующего элемента на единицу больше, чем у предыдущего, и в его электронной оболочке на один электрон больше.

Порядковый (атомный) номер химического элемента численно равен заряду его атома.

С тех пор как ученые выявили физический смысл порядкового номера элемента, периодический закон формулируется так: свойства простых веществ, а также состав и свойства соединений химических элементов находятся в периодической зависимости от заряда ядра атомов.

Как можно объяснить, почему значения зарядов ядер атомов химических элементов в периодической системе возрастают, а правильная последовательность увеличения относительной атомной массы в ряде случаев нарушается? Для ответа на этот вопрос надо привлечь сведения о составе атомных ядер, известные вам из курса физики.

Ядра атомов заряжены положительно, так как в их состав входят протоны. Протон – это частица с зарядом +1 и относительной массой, равной 1. Ядро атома водорода имеющего относительную атомную массу, равную 1,- это протон. В ядре гелия два протона, но относительная атомная масса гелия равна 4. Это связано с тем, что в ядро атома гелия входят не только протоны, но и нейтроны – незаряженные частицы с относительной атомной массой, равной 1. Следовательно, чтобы найти число нейтронов в атоме, из относительной атомной массы надо вычесть число протонов (заряд ядра атома, порядковый номер) Масса электронов ничтожна, мала, ее в расчет не принимают.

Именно по числу протонов в ядре отличаются атомы разных элементов. Химический элемент – это вид атомов с одинаковым зарядом ядра. Число нейтронов в ядрах атомов одного и того же элемента может быть разным.

Разновидности атомов химического элемента, имеющие в ядрах разное число нейтронов, называют изотопами. Именно наличием изотопов объясняются те перестановки, которые в свое время. Современная наука подтвердила его правоту. Так, природный калий образован в основном атомами его легких изотопов, а аргон – тяжелых. Поэтому относительная атомная масса калия меньше, чем аргона, хотя порядковый номер (заряд) калия больше.

Большинство химических элементов представляет собой смеси изотопов. Например , природный хлор содержит изотопы с атомными массами 35 и 37. Относительная атомная масса 35,5 получена расчетным путем с учетом не только массы изотопов, но и содержания каждого из них в природе. Из-за того, что химические элементы имеют изотопы, а значения относительных атомных масс элементов – это усредненные по содержанию изотопов величины, они представляют собой дробные, а не целые числа.

Когда хотят подчеркнуть о каком именно изотопе идет речь, около химического знака слева вверху пишут значение относительной атомной массы атома этого изотопа, а слева внизу – заряд ядра, например 37Cl17.

1.2. Состояние электронов в атоме

Под состоянием электрона в атоме понимают совокуп­ность информации об энергии определенного электрона и про­ странстве, в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, то есть мож­но говорить лишь о вероятности нахождения его в простран­стве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с оп­ределенной плотностью отрицательного заряда.

В. Гейзенберг ввел понятие о принципе неопределенности, то есть показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее будет его положение, и наоборот, определив положение, нельзя определить энергию элект­рона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где ве­роятность нахождения электрона будет максимальной.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе, к которому принадлежит химический элемент: у ато мов элементов первого периода - один энергетический уровень, второго периода - два, седьмого периода - семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле

N = 2 n 2 ,

где N - максимальное число электронов; п - номер уровня или главное квантовое число. Следовательно, на первом, бли­ жайшем к ядру энергетическом уровне может находиться не более двух электронов;

на втором - не более 8;

на третьем - не более 18;

на четвертом - не более 32.

А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня (п = 2), каждый из уровней подразделяется на подуровни (подслои), не­сколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуро­вень; второй - два; третий - три; четвертый - четыре подуровня. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению п соответствует число орбиталей, равное п2. По данным, представленным в таблице 1, можно про­следить связь главного квантового числа п с числом подуров­ней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.

s -Подуровень - первый, ближайший к ядру атома подуровень каждого энергетического уровня, состоит из одной s-орбитали;

р-подуровень - второй подуровень каждого, кроме перво­го, энергетического уровня, состоит из трехр-орбиталей;

d -подуровень - третий подуровень каждого, начиная с третьего, энергетического уровня, состоит из пяти d-орбиталей;

f -подуровень каждого, начиная с четвертого, энергетического уровня, состоит из семи - орбиталей.

На рисунке представлена схема, отражающая число, форму и положение в пространстве электронных орбиталей первых четырех электронных слоев отдельного атома.

1.3. Электронные конфигурации в атомах химических элементах

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитами может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено »), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей вооб­ражаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называ­ется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.

s-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (п = 1) располагается на этой орбитали и неспарен. Поэтому его электронная формула, или элек тронная конфигурация, будет записываться так: 1s1. В электрон­ных формулах номер энергети­ческого уровня обозначается цифрой, стоящей перед буквой (1...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как по­казатель степени), показывает число электронов на подуровне.

На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уров­ня (2p-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны ls-орбитали (n = 2)

Вообще, для каждого значения п существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения п.

р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с п = 2, имеет три р-орбитали. С увеличением значения п электроны занимают. р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

У элементов второго периода (п = 2) заполняется сначала одна s-орбиталь, а затем три р-орбитали.

У элементов третьего периода заполняются соответственно 3s - и 3р-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4s - и 5s - орбитали.

Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d - и 4d - орбитали соответственно.

У элементов больших периодов - шестого и незавершен­ного седьмого - электронные уровни и подуровни заполняют­ся электронами, как правило, так: первые два электрона по­ступят на внешний s-подуровень следующий один электрон (у La и Ас) на предыдущий d-подуровень. Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4 f- и 5f-орбитали соответственно у лантаноидов и актиноидов:

Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73Та 2, 8, 18, 32, 11, 2; 104Rf 2, 8, 18, 32, 32, 10, 2, - и, наконец, только после полного заполнения десятью электронами d-подуровня будет снова заполняться внешний р-подуровень:

86Rn 2, 8, 18, 32, 18, 8.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два пра­вила: принцип Паули , согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда , согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

1.4. Строение электронной оболочки атомов

В ходе химических реакций ядра атомов не изменяются. Этот вывод можно сделать из известного вам факта, что продукты реакции состоят из атомов тех же химических элементов, что и исходные вещества. Но что же происходит с атомами в ходе химических реакций? Существует ли связь между строением атома и проявлением тех или иных физических и химических свойств? Для ответа на вопросы надо сначала рассмотреть строение электронной оболочки атомов разных химических элементов.

Число электронов в атоме равно заряду его ядра. Электроны располагаются на разном удалении от ядра атома, группируясь в электронные слои. Чем ближе к ядру расположены электроны, тем прочнее они связаны с ядром.

Ядро атома водорода имеет заряд +1. В атоме только одни электрон и, естественно, одни электронный слой.

Следующий за водородом гелий. Не образует соединений с другими элементами, а значит, валентность не проявляет. Ядро атома гелия имеет заряд +2, вокруг него движутся два электрона, образуя один электронный слой. Атомы гелия не дают соединений с атомами других химических элементов, а это говорит о большой устойчивости его электронной оболочки. Электронные оболочки гелия и других атомов инертных газов называют завершенными.

Следующий элемент – литий. В атоме лития три электрона. Два из них находятся на первом, ближнем к ядру электронном слое, а третий образует второй внешний электронный слой. В атоме лития появился второй электронный слой. Находящийся на нем электрон более удален от ядра и слабее связан с ядром, чем два других.

Найдите в периодической таблице химический знак лития. От лития до неона закономерно возрастает заряд ядер атомов. Постепенно заполняется электронами второй электронный слой, и с ростом числа электронов на нем металлические свойства элементов постепенно ослабевают и сменяются нарастающими неметаллическими.

Фтор – самый активный неметалл, заряд его ядра +9, в его атоме два электронных слоя, содержащих 2 и 7 электронов. За фтором следует неон.

По свойствам элементы фтор и неон резко различаются. Неон инертен и так же, как гелий, не образует соединений. Значит, второй электронный слой, содержащий восемь электронов, является завершенным: электроны сформировали устойчивую систему, придавая атому инертность.

Если это так, то следующий элемент, атомы которого должны отличатся от атомов неона дополнительным протоном в ядре и электронном, будет иметь три электронных слоя. У атома этого элемента появится, таким образом, третий, внешний электронный слой, заселенный одним электроном. Этот элемент будет резко отличатся по свойствам от неона, он должен быть активным металлом, подобно литию, и проявлять в соединениях валентность, равную 1.

Данному описанию подходит элемент натрий. Он открывает третий период. Натрий – щелочной металл, еще более активный чем литий. Значит, наши предположения оказались верны. Единственный электрон внешнего электронного слоя атома натрия расположен дальше от ядра, чем внешний электрон лития, а потому еще слабее связан с ядром.

В ряду элементов от натрия до аргона вновь проявляется отмеченная выше закономерность: увеличивается число электронов, образующих внешний электронный слой атомов, металлические свойства простых веществ от натрия к алюминию ослабевают, неметаллические свойства усиливаются при переходе от кремния к фосфору и сере и наиболее ярко выражены у галогенов. В конце третьего периода находится элемент – аргон, в атоме которого завершенный, восьмиэлектронный внешний слой. При переходе от хлора к аргону резко изменяются свойства атомов элементов, а с ними и свойства простых веществ и соединений этого элемента. Известно, что аргон – инертный газ. Он не вступает в соединения с другими веществами.

Также резко изменяются свойства и при переходе от аргона – последнего элемента третьего периода к первому элементу четвертого периода – калию. Калий – щелочной металл, в химическом отношении очень активен.

Таким образом, количественные изменения в составе атома (число протонов в ядре и электронов на внешнем электронном слое) связаны с качественными (свойства простых веществ и соединений, образованных химическим элементом).

Систематизируем знания.

1. В электронной оболочке атома электроны расположены слоями. Первый от ядра слой завершен, когда на нем находятся два электрона, второй завершенный слой содержит восемь электронов.

2. Число электронных слоев в атоме совпадает с номером периода, в котором находится химический элемент

3. Электронная оболочка атома каждого следующего элемента в периодической системе повторяет строение электронной оболочки предыдущего элемента, но отличается от нее на один электрон.

Изученного вам достаточно, чтобы сделать выводы о взаимосвязи строения атомов и свойства химических элементов, понять причины периодического изменения их свойств, сходства и различия. Сформулировать эти выводы.

1. Свойства химических элементов, расположенных в порядке возрастания зарядов ядер атомов, изменяются периодически потому, что периодически повторяется сходное строение внешнего электронного слоя атомов .

2. Плавное изменение свойств элементов в пределах одного периода обусловлено постепенным увеличением числа электронов на внешнем слое атомов.

3. Завершение внешнего электронного слоя атома приводит к резкому скачку в свойствах при переходе от галогена к инертному газу; появление нового внешнего электронного слоя в атоме – причина резкого скачка в свойствах при переходе от инертного газа к щелочному металлу.

4. Свойства химических элементов, принадлежащих к одному семейству, сходны потому, что на внешнем электронном слое их атомов находится одинаковое число электронов.

1.5. Валентные возможности атомов химических элементов

Строение наружных энергетических уровней атомов химических элементов и определяет в основном свойства их атомов. Поэтому эти уровни называют валентными. Электроны этих уровней, а иногда и предвнешних уровней могут принимать участие в образовании химических связей. Такие электроны также называют валентными.

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи .

Валентные электроны атомов элементов главных подгрупп расположены на s - и p-орбиталях внешнего электронного слоя. У элементов побочных подгрупп, кроме лантаноидов и актиноидов, валентные электроны расположены на s-орбитали внешнего и d-орбиталях предвнешнего слоев.

Для того чтобы верно оценить валентные возможности атомов химических элементов, нужно рассмотреть распределение электронов в них по энергетическим уровням и подуровням и определить число неспаренных электронов в соответствии с принципом Паули и правилом Хунда для невозбужденного (основного, или стационарного) состояния атома и для возбужденного (то есть получившего дополнительную энергию, в результате чего происходит распаривание электронов внешнего слоя и переход их на свободные орбитали). Атом в возбужденном со­стоянии обозначают соответствующим символом элемента со звездочкой.

https://pandia.ru/text/80/139/images/image003_118.gif" height="757">Например, рассмотрим валентные возможности атомов фосфора в стационарном и возбужденном состояниях:

https://pandia.ru/text/80/139/images/image006_87.jpg" width="384" height="92 src=">

Затраты энергии на возбуждение атомов углерода с избыт­ком компенсируются энергией, выделяющейся при образова нии двух дополнительных ковалентных связей. Так, для перевода атомов углерода из стационарного состояния 2s22p2 в возбужденное - 2s12p3 требуется затратить около 400 кДж/моль энергии. Но при образовании С-Н-связи в предельных угле­водородах выделяется 360 кДж/моль. Следовательно, при об­разовании двух молей С-Н-связей выделится 720 кДж, что превышает энергию перевода атомов углерода в возбужденное состояние на 320 кДж/моль.

В заключение следует отметить, что валентные возмож­ности атомов химических элементов далеко не исчерпывают­ся числом неспаренных электронов в стационарном и возбуж­денном состояниях атомов. Если вы вспомните донорно-акцепторный механизм образования ковалентных связей, то вам станут понятны и две другие валентные возможности атомов химических элементов, которые определяются наличием сво­бодных орбиталей и наличием неподеленных электронных пар, способных дать ковалентную химическую связь по донорно-акцепторному механизму. Вспомните образование иона ам­мония NH4+ (Более подробно мы рассмотрим реализацию этих валентных возможностей атомами химических элементов при изучении химической связи.)

Сделаем общий вывод.

Валентные возможности атомов химических элементов определяются: 1) числом неспаренных электронов (одноэлектронных орбиталей); 2) наличием свободных орбиталей; 3) наличием неподеленных пар электронов.

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.

Атом - наименьшая частица вещества, неделимая химическим путем. В XX веке было выяснено сложное строение атома. Атомы состоят из положительно заряженного ядра и оболочки, образованной отрицательно заряженными электронами. Общий заряд свободного атома равен нулю, так как заряды ядра и электронной оболочки уравновешивают друг друга. При этом величина заряда ядра равна номеру элемента в периодической таблице (атомному номеру ) и равна общему числу электронов (заряд электрона равен −1).

Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц - нейтронов , не имеющих заряда. Обобщенные характеристики элементарных частиц в составе атома можно представить в виде таблицы:

Число протонов равно заряду ядра, следовательно, равно атомному номеру. Чтобы найти число нейтронов в атоме, нужно от атомной массы (складывающейся из масс протонов и нейтронов) отнять заряд ядра (число протонов).

Например, в атоме натрия 23 Na число протонов p = 11, а число нейтронов n = 23 − 11 = 12

Число нейтронов в атомах одного и того же элемента может быть различным. Такие атомы называют изотопами .

Электронная оболочка атома также имеет сложное строение. Электроны располагаются на энергетических уровнях (электронных слоях).

Номер уровня характеризует энергию электрона. Связано это с тем, что элементарные частицы могут передавать и принимать энергию не сколь угодно малыми величинами, а определенными порциями - ква́нтами. Чем выше уровень, тем большей энергией обладает электрон. Поскольку чем ниже энергия системы, тем она устойчивее (сравните низкую устойчивость камня на вершине горы, обладающего большой потенциальной энергией, и устойчивое положение того же камня внизу на равнине, когда его энергия значительно ниже), вначале заполняются уровни с низкой энергией электрона и только затем - высокие.

Максимальное число электронов, которое может вместить уровень, можно рассчитать по формуле:
N = 2n 2 , где N - максимальное число электронов на уровне,
n - номер уровня.

Тогда для первого уровня N = 2 · 1 2 = 2,

для второго N = 2 · 2 2 = 8 и т. д.

Число электронов на внешнем уровне для элементов главных (А) подгрупп равно номеру группы.

В большинстве современных периодических таблиц расположение электронов по уровням указано в клеточке с элементом. Очень важно понимать, что уровни читаются снизу вверх , что соответствует их энергии. Поэтому столбик цифр в клеточке с натрием:
1
8
2

на 1-м уровне - 2 электрона,

на 2-м уровне - 8 электронов,

на 3-м уровне - 1 электрон
Будьте внимательны, очень распространенная ошибка!

Распределение электронов по уровням можно представить в виде схемы:
11 Na)))
2 8 1

Если в периодической таблице не указано распределение электронов по уровням, можно руководствоваться:

  • максимальным количеством электронов: на 1-м уровне не больше 2 e − ,
    на 2-м - 8 e − ,
    на внешнем уровне - 8 e − ;
  • числом электронов на внешнем уровне (для первых 20 элементов совпадает с номером группы)

Тогда для натрия ход рассуждений будет следующий:

  1. Общее число электронов равно 11, следовательно, первый уровень заполнен и содержит 2 e − ;
  2. Третий, наружный уровень содержит 1 e − (I группа)
  3. Второй уровень содержит остальные электроны: 11 − (2 + 1) = 8 (заполнен полностью)

* Ряд авторов для более четкого разграничения свободного атома и атома в составе соединения предлагают использовать термин «атом» только для обозначения свободного (нейтрального) атома, а для обозначения всех атомов, в том числе и в составе соединений, предлагают термин «атомные частицы». Время покажет, как сложится судьба этих терминов. С нашей точки зрения, атом по определению является частицей, следовательно, выражение «атомные частицы» можно рассматривать как тавтологию («масло масляное»).

2. Задача. Вычисление количества вещества одного из продуктов реакции, если известна масса исходного вещества.
Пример:

Какое количество вещества водорода выделится при взаимодействии цинка с соляной кислотой массой 146 г?

Решение:

  1. Записываем уравнение реакции: Zn + 2HCl = ZnCl 2 + H 2
  2. Находим молярную массу соляной кислоты: M (HCl) = 1 + 35,5 = 36,5 (г/моль)
    (молярную массу каждого элемента, численно равную относительной атомной массе, смотрим в периодической таблице под знаком элемента и округляем до целых, кроме хлора, который берется 35,5)
  3. Находим количество вещества соляной кислоты: n (HCl) = m / M = 146 г / 36,5 г/моль = 4 моль
  4. Записываем над уравнением реакции имеющиеся данные, а под уравнением - число моль согласно уравнению (равно коэффициенту перед веществом):
    4 моль x моль
    Zn + 2HCl = ZnCl 2 + H 2
    2 моль 1 моль
  5. Составляем пропорцию:
    4 моль - x моль
    2 моль - 1 моль
    (или с пояснением:
    из 4 моль соляной кислоты получится x моль водорода,
    а из 2 моль - 1 моль)
  6. Находим x:
    x = 4 моль 1 моль / 2 моль = 2 моль

Ответ: 2 моль.