Правильным многогранником называется выпуклый многогранник, грани которого - равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер.

Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это - очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников - бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8граней), додекаэдр (12 граней) и икосаэдр (20 граней). По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. - указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра - правильные треугольники, куба - квадраты, додекаэдра - правильные пятиугольники.

Многогранник называется выпуклым , если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы. Выпуклый многогранник разрезает пространство на две части -- внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранная, то соответствующий многогранник -- выпуклый.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. «Правильных многогранников вызывающе мало», - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук.

Каково же это вызывающе малое количество и почему их именно столько. А сколько? Оказывается, ровно пять - ни больше, ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к < 360, можно доказать, что правильных многогранников ровно пять (к - число плоских углов, сходящихся в одной вершине многогранника).

Названия правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник", "двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Итак, было выяснено, что правильных многогранников ровно пять. А как определить в них количество ребер, граней, вершин? Это нетрудно сделать для многогранников с небольшим числом ребер, а как, например, получить такие сведения для икосаэдра? Знаменитый математик Л. Эйлер получил формулу В+Г-Р=2, которая связывает число вершин /В/, граней /Г/ и ребер /Р/ любого многогранника. Простота этой формулы заключается в том, что она не связана ни с расстоянием, ни с углами. Для того чтобы определить число ребер, вершин и граней правильного многогранника, найдем сначала число к=2у - ху+2х, где х - число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной вершине.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к тайне мировой гармонии и показали неотразимую привлекательность геометрии.

Список правильных многогранников

Существует всего пять правильных многогранников:

Изображение

Тип правильного многогранника

Число сторон у грани

Число рёбер, примыкающих к вершине

Общее число вершин

Общее число рёбер

Общее число граней

Тетраэдр

Додекаэдр

Икосаэдр

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Впрочем, многогранники - отнюдь не только объект научных исследований. Их формы - завершенные и причудливые, широко используются в декоративном искусстве. Обычно модели многогранников конструируют из разверток. Но есть и другой способ.

Математики давно уже доказали возможность построения трехмерных объектов из ленты. На рис. 1 показано, как получить тетраэдр, перегибая бумажную ленту по сторонам расчерченных на ней равносторонних треугольников.

Рис. 1

Аналогичным способом можно свернуть куб (рис. 2). Его грани также выстраиваются в цепочку, а чтобы изменить направление ленты для завершения формообразования, достаточно перегнуть ее по диагонали квадрата.

Рис. 2

Так, ничем на первый взгляд не примечательная бумажная лента при нанесении на ее поверхность узора превращается в заготовку для построения самых разнообразных многогранников. На основе различных узоров можно создать все правильные многогранники, кроме додекаэдра. Это объясняется отсутствием у плоских узоров осей симметрии 5-го, 7-го и высших порядков - иначе говоря, сплошной узор из пятиугольников построить невозможно.

Рис.3

Построение октаэдра и икосаэдра осуществляется на основе узора из правильных треугольников (рис. 3 и рис. 4). Свернув для октаэдра кольцо из шести, а для икосаэдра - из десяти треугольников, перегибаем ленту в обратную сторону и продолжаем сворачивать такие же кольца.

Рис.4


Узоры наших лент - это частный случай сетей симметрии Шубникова - Лавеса (см. рис. 5). Треугольные ячейки получаются наложением двух пар зеркальных гексагональных решеток, развернутых друг относительно друга на 90°, а квадратные - совмещением квадратных решеток под углом 45° друг к другу. С этих позиций процесс образования многогранников из фокуса превращается в теоретически обоснованное и закономерное явление.

Рис. 5

В самом деле, когда сворачивается кольцо будущего многогранника, то в буквальном смысле производится перенос элементарной ячейки решетки на определенный шаг, то есть осуществляется переносная симметрия. Меняя направление формообразования за счет перегиба ленты в обратную сторону, производим мысленный поворот ячейки вокруг узла решетки, то есть проявляется уже симметрия поворотная. Стало быть, заготовка из ленты обеспечивает поворотно-переносную симметрию. Такая поворотно-переносная симметрия в наших построениях может осуществляться с углами поворотов; 30° 45°, 60°, 90°, 120°, 150°, 180°. В этом и состоит весь секрет способа образования из плоской ленты объемных тел.

Таким образом, ясно, что могут существовать только два типа лент с углами разбивки, кратными 30° и 45°. Из них получается четыре правильных многогранника: куб, октаэдр, тетраэдр, икосаэдр - и целое семейство однородных многогранников (см. рис. 6). В прекрасном сочинении Иоганна Кеплера "О шестиугольных снежинках" есть очень меткое замечание: "Среди правильных тел первым по праву считается куб, первозданная фигура, отец всех остальных тел, Октаэдр, имеющий столько же вершин, сколько у куба граней, является как бы его супругой..." Действительно, все элементы образующихся из нашей ленты сложных форм являются элементами куба или октаэдра, либо того и другого вместе.

Рис.6

многогранник тетраэдр куб октаэдр додекаэдр икосаэдр

Построение простых многогранников не представляет особых затруднений. Но чтобы сложить из ленты сложные звездчатые формы, понадобятся специальные приспособления для удержания еще не соединенных между собой колец - скрепки, зажимы и тому подобное. Создание оригинальных по своей форме многогранников чрезвычайно занимательно самим процессом формообразования.

Многогранник – геометрическое тело, ограниченное со всех сторон плоскостями- плоскими многоугольниками.

Выпуклый многогранник- если он расположен по одну сторону от каждой из его граней.

Призма- многогранник, 2 грани которого n-угольники, лежащие в параллельной плоскости, а остальные n-грани-параллелограммы.

Многоугольники, расположенные в параллельных плоскостях-основания.

Совокупность боковых граней образует боковую поверхность.

Призмы делятся на:

1)по числу углов основания(треугольная, четырёхугольная и т.д.)

2)по наклону рёбер к основанию(прямая, наклонная)

Правильная призма- основание правильный многоугольник.

Высота призмы- расстояние между основаниями.

Построение чертежа призмы сводится к построению её вершин (характерных точек) и построению прямых линий ограниченных проекцией.

Развёрткой многогранника наз фигура, полученная в результате совмещения всех его граней с плоскостью.

Развёртки изображают сплошными основными линиями. При необходимости наносят линии изгиба. Для развёртки принимают только натуральные величины элементов.

Пирамида- многогранник, одна грань кот n-угольник, а остальные – треугольники, имеющие общую вершину.

Если основание пирамиды- правильный многоугольник- правильная пирамида. Высота будет проходить через центр основания. Существую и др виды многогранников-призматоид, тэтраэдр, и др

10. Поверхности. Образование и задание поверхностей. Поверхности вращения.

Поверхность-общая часть двух смежных частей пространства, непрерывное множество положений перемещающихся в пространстве линий(траектория движения).Поверхности вращения- такие поверхности, кот образуются при вращении некоторой образующей вокруг неподвижной прямой- оси вращения.

При вращении каждая точка образующей описывает окружность, центр вращения которой находится на оси вращения. Эти окружности называются параллельными.

Параллель наибольшего диаметра наз экватор.

Цилиндр-геометрическое тело, ограниченное цилиндрической поверхностью и 2-мя параллельными плоскостями.

Если направляющая явл окружностью- круговой цилиндр.

Если образующая перпендикулярна онованию- прямой цилиндр.

Конус-геометрич тело, ограниченное конической поверхн, расположенной по одну сторону от вершины и плоскостью в основании пересек все образующие.

Сферическая поверхность. Получается при вращении окружности или её части расположенной в плоскости этой окружности при условии, что центр окружности находится на оси вращения.

Торическая поверхность- получается при вращении окружности или ей части вокруг оси, расположенной в плоскости этой окружности но не проходящей через её центр.

11. Пересечение поверхностей плоскостью.

При пересечении поверхности или какой-либо геометрической фигуры плоскостью получается плоская фигура, которую называют сечением.

Определение проекций линий сечения следует начинать с построения опорных точек - точек, расположенных на очерковых образующих поверхности (точки, определяющие границы видимости проекций кривой); точек, удаленных на экстремальные (максимальное и минимальное) расстояния от плоскостей проекций. После этого определяют произвольные точки линии сечения.

Построение сечения многогранников.

Многогранником называют пространственную фигуру, ограниченную замкнутой поверхностью, состоящей из отсеков плоскостей, имеющих форму многоугольников (в частном случае треугольников).

Стороны многоугольников образуют ребра, а плоскости многоугольников - грани многогранника.

Проекциями сечения многогранников, в общем случае, являются многоугольники, вершины которых принадлежат ребрам, а стороны - граням многогранника*. Поэтому задачу по определению сечения многогранника можно свести к многократному решению задачи по определению точки встречи прямой (ребер многогранника) с плоскостью или к задаче по нахождению линии пересечения двух плоскостей (грани многогранника и секущей плоскости).

Первый путь решения называют способом ребер, второй - способом граней

Построение сечения поверхности вращения.

Вид фигуры сечения тел вращения плоскостью зависит от положения секущей плоскости.

При пересечении кругового цилиндра плоскостью в сечении могут получиться три фигуры сечения цилиндра:

а) окружность, если секущая плоскость перпендикулярна оси цилиндра;

б) эллипс, если секущая плоскость наклонена к оси цилиндра

в) прямоугольник, если секущая плоскость параллельна оси цилиндра

Часть геометрии, которую мы изучали до сих пор, называется планиметрией - эта часть была о свойствах плоских геометрических фигур, то есть фигур, целиком расположенных в некоторой плоскости. Но окружающие нас предметы в большинстве не являются плоскими. Любой реальный предмет занимает какую-то часть пространства.

Раздел геометрии, в котором изучаются свойства фигур в пространстве, называется стереометрией .

Если поверхности геометрических тел составлены из многоугольников, то такие тела называются многогранниками .

Многоугольники, из которых составлен многогранник, называются его гранями . При этом предполагается, что никакие две соседние грани многогранника не лежат в одной плоскости.

Стороны граней называются рёбрами , а концы рёбер - вершинами многогранника.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Многогранники бывают выпуклыми и невыпуклыми .

Выпуклый многогранник характеризуется тем, что он расположен по одну сторону от плоскости каждой своей грани. На рисунке выпуклый многогранник - октаэдр. У октаэдра восемь граней, все грани - правильные треугольники.

На рисунке - невыпуклый (вогнутый) многоугольник. Если рассмотреть, например, плоскость треугольника \(EDC\), то, очевидно, часть многоугольника находится по одну сторону, а часть - по другую сторону этой плоскости.

Для дальнейших определений введём понятие параллельных плоскостей и параллельных прямых в пространстве и перпендикулярности прямой и плоскости.

Две плоскости называются параллельными , если они не имеют общих точек.

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются.

Прямую называют перпендикулярной к плоскости , если она перпендикулярна к любой прямой в этой плоскости.

Призма

Теперь можем ввести определение призмы.

\(n\)-угольной призмой называют многогранник, составленный из двух равных \(n\)-угольников, лежащих в параллельных плоскостях, и \(n\)-параллелограммов, которые образовались при соединении вершин \(n\)-угольников отрезками параллельных прямых.

Равные \(n\)-угольники называют основаниями призмы.

Стороны многоугольников называют рёбрами оснований .

Параллелограммы называют боковыми гранями призмы.

Параллельные отрезки называют боковыми рёбрами призмы.

Призмы бывают прямыми и наклонными .

Если основания прямой призмы - правильные многоугольники, то такую призму называют правильной .

У прямых призм все боковые грани - прямоугольники. Боковые рёбра прямой призмы перпендикулярны к плоскостям её оснований.

Если из любой точки одного основания провести перпендикуляр к другому основанию призмы, то этот перпендикуляр называют высотой призмы.

На рисунке - наклонная четырёхугольная призма, в которой проведена высота B 1 E .

В прямой призме каждое из боковых рёбер является высотой призмы.

На рисунке - прямая треугольная призма. Все боковые грани - прямоугольники, любое боковое ребро можно называть высотой призмы. У треугольной призмы нет диагоналей, так как все вершины соединены рёбрами.

На рисунке - правильная четырёхугольная призма. Основания призмы - квадраты. Все диагонали правильной четырёхугольной призмы равны, пересекаются в одной точке и делятся в этой точке пополам.

Четырёхугольная призма, основания которой - параллелограммы, называется параллелепипедом .

Вышеупомянутую правильную четырёхугольную призму можно также называть прямым параллелепипедом .

Если основания прямого параллелепипеда - прямоугольники, то этот параллелепипед - прямоугольный .

На рисунке - прямоугольный параллелепипед. Длины трёх рёбер с общей вершиной называют измерениями прямоугольного параллелепипеда.

Например, AB , AD и A A 1 можно называть измерениями.

Так как треугольники ABC и AC C 1 - прямоугольные, то, следовательно, квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений:

A C 1 2 = AB 2 + AD 2 + A A 1 2 .

Если через соответственные диагонали оснований провести сечение, получится то, что называют диагональным сечением призмы.

В прямых призмах диагональные сечения являются прямоугольниками. Через равные диагонали проходят равные диагональные сечения.

На рисунке - правильная шестиугольная призма, в которой проведены два разных диагональных сечения, которые проходят через диагонали с разными длинами.

Основные формулы для расчётов в прямых призмах

1. Боковая поверхность S бок. = P осн. ⋅ H , где \(H\) - высота призмы. Для наклонных призм площадь каждой боковой грани определяется отдельно.

2. Полная поверхность S полн. = 2 ⋅ S осн. + S бок. . Эта формула справедлива для всех призм, не только для прямых.

3. Объём V = S осн. ⋅ H . Эта формула справедлива для всех призм, не только для прямых.

Пирамида

\(n\)-угольная пирамида - многогранник, составленный из \(n\)-угольника в основании и \(n\)-треугольников, которые образовались при соединении точки вершины пирамиды со всеми вершинами многоугольника основания.

\(n\)-угольник называют основанием пирамиды.

Треугольники - боковые грани пирамиды.

Общая вершина треугольников - вершина пирамиды.

Рёбра, выходящие из вершины - боковые рёбра пирамиды.

Перпендикуляр от вершины пирамиды к плоскости основания называют высотой пирамиды.

Введение

Поверхность, составленную из многоугольников и ограничивающую некоторые геометрическое тело, называют многогранной поверхностью или многогранником.

Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников. Многоугольники, которые ограничивают многогранник, называются гранями, линии пересечения граней называются ребрами.

Многогранники могут иметь разнообразное и очень сложное строение. Различные постройки, например строящиеся дома из кирпичей и бетонных блоков, представляют собой примеры многогранников. Другие примеры можно найти среди мебели, например стол. В химии форма молекул углеводорода представляет собой тетраэдр, правильного двадцатигранника, куб. В физики примером многогранников служат кристаллы.

С древнейших времен представления о красоте связывали с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей, которых поражала красота, совершенство, гармония этих фигур.

Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии.

История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.

Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

Пифагорейцы полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных тел:

§ Вселенная - додекаэдр

§ Земля - куб

§ Огонь - тетраэдр

§ Вода - икосаэдр

§ Воздух - октаэдр

Позже учение пифагорейцев о правильных многогранниках изложил в своих трудах другой древнегреческий ученый, философ - идеалист Платон. С тех пор правильные многогранники стали называться Платоновыми телами.

Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники. К каждой вершине правильного многогранника сходится одно и то же число рёбер. Все двугранные углы при рёбрах и все многогранные углы при вершинах правильного многоугольника равны. Платоновы тела - трехмерный аналог плоских правильных многоугольников.

Теория многогранников является современным разделом математики. Она тесно связана с топологией, теорией графов, имеет большое значение как для теоретических исследований по геометрии, так и для практических приложений в других разделах математики, например, в алгебре, теории чисел, прикладной математики - линейном программировании, теории оптимального управления. Таким образом, данная тема является актуальной, а знания по данной проблематике – важными для современного общества.

Основная часть

Многогранникомназывается ограниченное тело, поверхность которого состоит из конечного числа многоугольников.

Приведем определение многогранника, равносильное первому определению многогранника.

Многогранник это фигура, являющаяся объединением конечного числа тетраэдров, для которых выполнены следующие условия:

1) каждые два тетраэдра не имеют общих точек, либо имеют общую вершину, либо только общее ребро, либо целую общую грань;

2) от каждого тетраэдра к другому можно перейти по цепочке тетраэдра, в которой каждый последующий прилегает к предыдущему по целой грани.

Элементы многогранника

Грань многогранника – это некоторый многоугольник (многоугольником называется ограниченная замкнутая область, граница которой состоит из конечного числа отрезков).

Стороны граней называются ребрами многогранника, а вершины граней – вершинамимногогранника. К элементам многогранника, кроме его вершин, ребер и граней, относятся также плоские углы его граней и двугранные углы при его ребрах. Двугранный угол при ребре многогранника определяется его гранями, подходящими к этому ребру.

Классификация многогранников

Выпуклый многогранник - это многогранник, любые две точки которого соединимы в нем отрезком. Выпуклые многогранники обладают многими замечательными свойствами.

Теорема Эйлера. Для любого выпуклого многогранника В-Р+Г=2,

Где В – число его вершин, Р - число его ребер, Г - число его граней.

Теорема Коши. Два замкнутых выпуклых многогранника, одинаково составленные из соответственно равных граней равны.

Выпуклый многогранник считается правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходиться одно и то же число ребер.

Правильный многогранник

Многогранник называется правильным, если, во-первых, он выпуклый, во-вторых, все его грани - равные друг другу правильные многоугольники, в-третьих, в каждой его вершине сходятся одинаковое число граней, и, в-четвертых, все его двугранные углы равны.

Существует пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются "Начала" Евклида (древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике). Почему правильные многогранники получили такие имена? Это связано с числом их граней. Тетраэдр имеет 4 грани, в переводе с греческого "тетра" - четыре, "эдрон" - грань. Гексаэдр (куб) имеет 6 граней, "гекса" - шесть; октаэдр - восьмигранник, "окто" - восемь; додекаэдр - двенадцатигранник, "додека" - двенадцать; икосаэдр имеет 20 граней, "икоси" - двадцать.

2.3. Типы правильных многогранников:

1) Правильный тетраэдр (составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольник. Следовательно, сумма плоских углов при каждой вершине равна 180 0);

2) Куб - параллелепипед, все грани которого – квадраты. Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270 0 .

3) Правильный октаэдр или просто октаэдр многогранник, у которого восемь правильных треугольных граней и в каждой вершине сходятся по четыре грани. Октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240 0 . Его можно построить, сложив основаниями две пирамиды, в основании которых квадраты, а боковые грани - правильные треугольники. Ребра октаэдра можно получить, соединяя центры соседних граней куба, если же соединить центры соседних граней правильного октаэдра, то получим ребра куба. Говорят, что куб и октаэдр двойственны друг другу.

4)Икосаэдр - составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300 0 .

5) Додекаэдр - многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324 0 .

Додекаэдр и икосаэдр тоже двойственны друг другу в том смысле, что, соединив отрезками центры соседних граней икосаэдра, мы получим додекаэдр, и наоборот.

Правильный тетраэдр двойственен сам себе.

При этом не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n ≥ 6.

Правильным многогранником называется многогранник, у которого все грани правильные равные многоугольники, и все двугранные углы равны. Но есть и такие многогранники, у которых все многогранные углы равны, а грани - правильные, но разноименные правильные многоугольники. Многогранники такого типа называются равноугольно-полуправильными многогранниками. Впервые многогранники такое типа открыл Архимед. Им подробно описаны 13 многогранников, которые позже в честь великого ученого были названы телами Архимеда. Это усеченный тетраэдр, усеченный оксаэдр, усеченный икосаэдр, усеченный куб, усеченный додекаэдр, кубооктаэдр, икосододекаэдр, усеченный кубооктаэдр усеченный икосододекаэдр, ромбокубооктаэдр, ромбоикосододекаэдр, "плосконосый" (курносый) куб, "плосконосый" (курносый) додекаэдр.

2.4. Полуправильные многогранники или Архимедовы тела - выпуклые многогранники, обладающие двумя свойствами:

1. Все грани являются правильными многоугольниками двух или более типов (если все грани - правильные многоугольники одного типа, это - правильный многогранник).

2. Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую. В частности все многогранные углы при вершинах конгруэнтны.

Кроме полуправильных многогранников из правильных многогранников - Платоновых тел, можно получить так называемые правильные звездчатые многогранники. Их всего четыре, они называются также телами Кеплера-Пуансо. Кеплер открыл малый додекаэдр, названный им колючим или ежом, и большой додекаэдр. Пуансо открыл два других правильных звездчатых многогранника, двойственных соответственно первым двум: большой звездчатый додекаэдр и большой икосаэдр.

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплерприсвоил этой фигуре имя «стелла октангула» - «восьмиугольная звезда». Она встречается и в природе: это так называемый двойной кристалл.

В определении правильного многогранника сознательно - в расчете на кажущуюся очевидность - не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера - Пуансо), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур - грани их, сколько ни продолжай, не пересекаются.

Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров - «стелла октангула», которая называется «продолженным октаэдром».

Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них - малый звездчатый додекаэдр, полученный впервые Иоганном Кеплером.

Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г-Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.

Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово «правильный» - ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники. Кеплер не додумался, что у полученной им фигуры есть двойник.

Многогранник, который называется «большой додекаэдр» - построил французский геометр Луи Пуансо спустя двести лет после кеплеровских звездчатых фигур.

Большой икосаэдрбыл впервые описан Луи Пуансо в 1809 году. И опять Кеплер, увидев большой звездчатый додекаэдр, честь открытия второй фигуры оставил Луи Пуансо. Эти фигуры также наполовину подчиняются формуле Эйлера.

Практическое применение

Многогранники в природе

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник.

Также мы можем наблюдать многогранники в виде цветов. Ярким примером могут служить кактусы.


Похожая информация.


Теоретическая часть

Определение и классификация многогранников

Теория многогранников, в частности выпуклых многогранников, - одна из самых увлекательных глав геометрии.

Л.А. Люстерник

Многогранники представляют собой простейшие тела в пространстве, подобно тому, как многоугольники - простейшие фигуры на плоскости. С чисто геометрической точки зрения многогранник - это часть пространства, ограниченная плоскими многоугольниками - гранями. Стороны и вершины граней называют рёбрами и вершинами самого многогранника. Грани образуют так называемую многогранную поверхность. На многогранную поверхность обычно накладывают такие ограничения:

1) каждое ребро должно являться общей стороной двух и только двух граней, называемых смежными;

2) каждые две грани можно соединить цепочкой последовательно смежных граней;

3) для каждой вершины углы прилежащих к этой вершине граней должны ограничивать некоторый многогранный угол.

Геометрические тела

Многогранники

Не многогранники

Фигура на рисунке 1 является многогранником. Совокупность из 18 квадратов на рисунке 2 многогранником не является, потому что не выполняются ограничения, накладываемые на многогранные поверхности.

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой из его граней.

Многогранник называется правильными, если:

Он выпуклый;

Все его грани являются равными правильными многоугольниками;

В каждой его вершине сходится одинаковое число граней;

Все его двухгранные углы равны.

Виды правильных многогранников

«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук»

Л. Кэррол

Первые упоминания о правильных многогранниках

Школе Пифагора приписывают открытие существования 5 типов правильных выпуклых многогранников. Позже в своем трактате «Тимей» другой древнегреческий ученый Платон изложил учение пифагорейцев о правильных многогранниках. С тех пор правильные многогранники стали называться Платоновыми телами. Правильным многогранником посвящена последняя, XIII книга знаменитого труда Евклида «Начала». Существует версия, что Евклид написал первые 12 книг для того, чтобы читатель понял написанную в XIII книге теорию правильных многогранников, которую историки математики называют «венцом «Начал». Здесь установлено существование всех пяти типов правильных многогранников и доказано, что других правильных многогранников не существует.

Почему их только 5

А все-таки, почему же правильных многогранников только пять? Ведь правильных многоугольников на плоскости - бесконечное число.

а) Пусть грани правильного многогранника - правильные треугольники, каждый плоский угол при этом равен 60 о. Если при вершине многогранного угла n плоских углов, то 60 о n < 360 o , n < 6,

n = 3, 4, 5, т.е. существует 3 вида правильных многогранников с треугольными гранями. Это тетраэдр, октаэдр, икосаэдр.

б) Пусть грани правильного многогранника - квадраты, каждый плоский угол составляет 90 о. Для n - гранных углов 90 о n<360 о, n < 4,

n = 3, т.е. квадратные грани может иметь лишь правильный многогранник с трехгранными углами - куб.

в) Пусть грани - правильные пятиугольники, каждый плоский угол равен 180 о (5 - 2) : 5 = 108 о, 108 о n<360 о, n< n = 3, додекаэдр.

г) У правильного шестиугольника внутренние углы:

L = 180 о (6 - 2) : 6 = 120 о

В этом случае невозможен даже трехгранный угол. Значит, правильных многогранников с шестиугольными и более гранями не существует.

Почему правильные многогранники получили такие названия

Это связано с числом их граней. В переводе с греческого языка:

эдрон - грань, окто - восемь, значит, октаэдр - восьмигранник

тетра - четыре, поэтому тетраэдр - пирамида, состоящая из четырех равносторонних треугольников,

додека - двенадцать, додекаэдр состоит из двенадцати граней,

гекса - шесть, куб - гексаэдр, так как у него шесть граней,

икоси - двадцать, икосаэдр - двадцатигранник.

Совершенство форм, красивые математические закономерности, присущие правильным многогранникам, явились причиной того, что им приписывались различные магические свойства. Они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.