Элементы комбинаторного анализа

Соединения. Пустъ А a 1 , a 2, a 3 …a n А m (m из n соединения из n элементов пo m

Перестановки. Пустъ А – множество, состоящее из конечного числа элементов a 1 , a 2, a 3 …a n . Из различных элементов множества А можно образовывать группы. Если в каждую группу входит одно и то же число элементов m (m из n ), то говорят, что они образуют соединения из n элементов пo m в каждом. Различают три вида соединений: размещения, сочетания и перестановки.

Размещения. Соединения каждое из которых содержит m различных элементов (m < n ) взятых из n элементов множества A , отличающихся друг oт друга или составом элементов, или их порядком называются размещениями из n элементов по m в каждом. Число таких размещений обозначается символом

Теорема 1. Число всех различных перестановок из n элементов равно

N(n-1)(n-2)(n-3)….3*2*1=1*2*3…(n-1)n=n!

Tеорема 2. Число всех размещений из n элементов по m вычисляется по формуле:

Сочетания. Соединения каждое из которых содержит m различных элементов (m < n ) взятых из n элементов множества А , отличающихся друг от друга по крайней мере одним из элементом (только составом) называются сочетаниями из n элементов по m в каждом. Число таких сочетаний обозначается символом


Теорема 3 . Число всех сочетаний из n элементов по m определяется формулой:

Иногда для записи числа размещений используют следующую формулу:

Сущность и условия применения теории вероятностей.

Теория вероятностей

Случайное явление –

только

Т.в. служит для обоснования математической и прикладной статистики, которая используется при планировании организации производства и др.

Основные понятия теории вероятностей.

Теория вероятностей есть математическая наука, изучающая закономерности в случайных явлениях.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.

Методы теории вероятности по природе приспособлены только для исследования массовых случайных явлений; они не дают возможность предсказать исход отдельного случайного явления, но дают возможность предсказать средний суммарный результат массы однородных случайных явлений.

В теории вероятностей испытанием принято называть эксперимент, который (хотя бы теоретически) может быть произведён в одних и тех же условиях неограниченное число раз.

Результат или исход каждого испытания назовём событием. Событие являетсяосновным понятием теории вероятностей. Будем обозначать события буквами А, В, С.

Виды событий:

достоверное событие - событие, которое в результате опыта обязательно произойдет.

невозможное событие - событие, которое в результате опыта не может произойти.

случайное событие - событие, которое может произойти в данном опыте, а может и не произойти. Равновозможность событий

Вероятностью события A (обозначают P(A) A (обозначают m(A)), N т.е. P(A) = m(A)/ N.

Вероятностное пространство.

Вероятностное пространство – это математическая модель случайного эксперимента (опыта) в аксиоматике А.Н. Колмогорова. Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, необходимую для его математического анализа средствами теории вероятностей. Любая задача теории вероятности решается в рамках некоторого вероятностного пространства, полностью заданного изначально. Задачи, в которых вероятностное пространство задано не полностью, а недостающую информацию следует получить по результатам наблюдений, относятся к области математической статистики.

Вероятностное пространство определяется тройкой компонент (символов) (Ω,S,P), где Ω-пространство элементарных событий

S-∂(сигма)-алгебра событий, Р - вероятность, Ω-достоверное событие, S-система подмножеств пространства элементарных исходов Ω.

5. 5.Непосредственный подсчет вероятности .

Классическое определение вероятности основано на понятии равновозможности событий .

Равновозможность событий означает, что нет оснований предпочесть какое-либо одно из них другим.

Рассмотрим испытание, в результате которого может произойти событие A . Каждый исход, при котором осуществляется событие A , называется благоприятным событию A.

Вероятностью события A (обозначают P(A) ) называется отношение числа исходов, благоприятных событию A (обозначают m(A)), к числу всех исходов испытания – N т.е. P(A) = m(A)/ N.

Из классического определения вероятности вытекают следующие ее свойства :

Вероятность любого события заключена между нулем и единицей.

Доказательство . Так как, то поделив все части неравенства на N , получим


Откуда по классическому определению вероятности следует, что

Вероятность достоверного события равна единице.

Вероятность невозможного события равна нулю

6. 6.Теоремы сложения вероятностей.

Если А и В несовместны, то Р(А + В) = Р(А) +Р(В)

Если А и Â противоположные события, то

Определение

Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками : ), где

Замечания

Конечные вероятностные пространства

Простым и часто используемым примером вероятностного пространства является конечное пространство. Пусть - конечное множество, содержащее элементов.

В качестве сигма-алгебры удобно взять семейство подмножеств . Его часто символически обозначают . Легко показать, что общее число членов этого семейства, т.е. число различных случайных событий, как раз равно , что объясняет обозначение.

Вероятность, вообще говоря, можно определять произвольно. Часто, однако, нет причин считать, что один элементарный исход чем-либо предпочтительнее другого. Тогда естественным способом ввести вероятность является:

,

где , и - число элементарных исходов, принадлежащих .

В частности, вероятность любого элементарного события:

Пример

Рассмотрим эксперимент с бросанием уравновешенной монеты. Естественным будет взять два события: выпадение герба () и выпадение решки (), то есть Тогда и вероятность можно посчитать следующим образом:

Таким образом определена тройка - вероятностное пространство, в рамках которого можно рассматривать различные задачи.


Wikimedia Foundation . 2010 .

Смотреть что такое "Вероятностное пространство" в других словарях:

    Поле вероятностей, совокупность непустого множества, класса подмножеств множества Q, являющегося борелевским полем (т. е. замкнутым относительно теоретико множественных операций, производимых в счетном числе) и распределения (вероятностной… … Математическая энциклопедия

    Пространство понятие, используемое (непосредственно или в составе сложных терминов) в естественных языках, а также в таких разделах знания, как философия, математика, физика и т. п. На уровне повседневного восприятия пространство интуитивно… … Википедия

    Пространство понятие, используемое (непосредственно или в словосочетаниях) в обыденной речи, а также в различных разделах знаний. Пространство на уровне повседневного восприятия Математика Трёхмерное пространство Аффинное пространство Банахово… … Википедия

    У этого термина существуют и другие значения, см. Пространство. В математике слово «пространство» употребляется в большом наборе сложных терминов. Грубо говоря, пространство есть множество с некоторой дополнительной структурой. В зависимости от… … Википедия

    Пространство элементарных событий множество всех различных исходов случайного эксперимента. Элемент этого множества называется элементарным событием или исходом. Пространство элементарных событий называется дискретным, если число его… … Википедия

    РАСПРЕДЕЛЕНИЕ ВЕРОЯТНОСТЕЙ (ВЕРОЯТНОСТНОЕ РАСПРЕДЕЛЕНИЕ) - одно из основных понятий теории вероятностей (см.) и статистики математической (см.). При современном подходе в качестве математич. модели изучаемого случайного явления берется соответствующее вероятностное пространство { F 1, S, Р), где Q… … Российская социологическая энциклопедия

    Множество всех элементарных событии, связанных с нек рым экспериментом, причем любой неразложимый исход эксперимента представляется одной и только одной точкой В. п. (выборочной точкой). В. п. является абстрактным множеством, на алгебре… … Математическая энциклопедия

    В функциональном анализе и смежных дисциплинах это фундаментальное свойство пространств. Содержание 1 Формулировка 2 Доказательство … Википедия

    Это неравенство треугольника для пространств функций с интегрируемой ой степенью. Содержание 1 Формулировка 2 Доказательство … Википедия

    Неравенство Гёльдера в функциональном анализе и смежных дисциплинах это фундаментальное свойство пространств Lp. Содержание 1 Формулировка 2 Частные случаи 2.1 Неравен … Википедия

Книги

  • Теория вероятностей. Вероятностное пространство. Условная вероятность , Татьяна Сабурова. В данном учебном пособии приводится краткое изложение теоретического материала по первой части курса «Теория вероятностей», разобраны решения большого количества типовых задач, приведены…

Говорят, что имеется вероятностная (математическая) модель случайного опыта, если построены:

1) пространство элементарных событий Е

2) поле событий К

3) распределение вероятностей на поле событий К , т.е. для каждого события А из поля событий К задана вероятность Р (А )

Тройка объектов (Е , К , Р ) называется вероятностным пространством (моделью) данного случайного опыта.

Если Е – дискретное, то (Е , К , Р ) называется дискретным.

Если Е – непрерывное, то (Е , К , Р ) называется непрерывным.

§6. Классическая вероятностная модель.

Вероятностная модель называется классической, если выполнены следующие 2 условия:

1) пространство элементарных событий – дискретное конечное, состоит из n элементарных событий Е ={e 1 , e 2 , …, e n }

2) - вероятности всех элементарных событий равны

Вероятностное пространство определяется так:

для заданного пространства Е поле событий К - есть множество всех подмножеств из Е , а вероятности Р (А ) для любого события А из К выражаются через вероятности элементарных событий.

По аксиоме 3:

§7. Геометрические вероятности.

Классическая модель: дискретная вероятностная модель

Геометрическая модель: непрерывная вероятностная модель

(Е , К , Р )

Е – непрерывное пространство, множество точек области на плоскости

К ={A }

А из Е : А – длина; А – площадь; А – объём

Эти вероятностные пространства служат моделью задач такого типа:

Наудачу бросается точка, наблюдается событие: попадание точки в область А . «Наудачу» означает: вероятность события А зависит от площади А , не зависит от её формы и положения Е .

§8. Теорема о сложении вероятностей.

(Не путать с аксиомой о сложении вероятностей).

Теорема. Задано вероятностное пространство (Е ,К , Р ), есть события А , В Е.

По аксиоме 3:

Вычитая из 1-го равенства 2-е получим ч.т.д.

Замечание: из аксиомы 3 следует, что если события составляют полную группу,

И - полная группа

§9. Условные вероятности.

Пример.

Три раза бросается монета. Результат: цифра или герб.

A – герб выпал один раз;

Пусть в результате опыта произошло событие В . Число выпавших гербов – нечётно.

Тогда, если В произошло, .

Рассмотрим более общую ситуацию: пусть некоторому случайному опыту соответствует классическая вероятностная модель.

, n элементарных событий

r элементарных событий входит и в А и в В .

Найдём вероятность события А при условии, что произошло В . Если В произошло, то его вероятность равна 1, то .

Событие А происходит, если происходит элементарное событие, принадлежащее пересечению, их всего r .

Определение: пусть задано вероятностное пространство (Е , К , Р ); А , В – события. Если , то условной вероятностью события А при условии, что событие В произошло, называется отношение

Теорема умножения вероятностей.

Вероятность произведения двух событий равна произведению вероятности одного из событий на условную вероятностью другого, вычисленную при условии, что событие первое имело место.

Вероятность произведения n событий.

Пример.

В урне 12 шаров: 5 белых, 7 чёрных. 2 лица один за другим вынимают по одному шару. Найти вероятность того, что оба шара белые.

А – белый шар у Пети

В – белый шар у Маши

Пример.

Вероятность попадания в цель при стрельбе из 1-го и 2-го орудия равны:

Найти вероятность попадания при одном залпе хотя бы одним из орудий.

А – попадание из 1-го орудия

В – попадание из 2-го орудия

А +В – попадание хотя бы из одного

Зависимые и независимые события.

Два события А и В называются независимыми, если вероятность их произведения равна произведению их вероятностей.

Свойства независимых событий:

1 ̊. Если P (A )>0, то независимость А и В эквивалентна равенству P (A /B )=P (A ). Вероятность А не меняется, если В произошло.

2 ̊. Если А и В – независимые события, то и - независимые.

Из последнего равенства получаем:

Пример.

Опыт: 2 раза бросается монета.

А – герб при 1-м бросании

В – выпадение цифры при 2-м бросании

А и В – независимые?

§10. Формула полной вероятности. Формулы Байеса.

Формула полной вероятности.

Пусть (Е , К , Р ) – модель некоторого случайного опыта.

Н 1 , Н 2 , …, Н n – полная группа.

H i – гипотеза

Доказательство:

т.к. H i – попарно несовместные, , по аксиоме 3 .

Пример.

Имеются 3 одинаковых урны. Состав: 1-я – 2 белых, 1 чёрный; 2-я – 3 белых, 1 чёрный; 3-я – 2 белых, 2 чёрных. Наудачу выбирается урна; из неё вынимается шар. Найти вероятность того, что шар – белый.

Гипотезы:

H i – выбрана i -я урна, i =1,2,3.

А – шар белый

Формулы Байеса.

Если вероятности гипотез до опыта известны, то их называют априорные вероятности гипотез. Пусть известно, что событие А произошло. Вероятность всех гипотез изменяется.

Вероятности гипотез после того, как событие А произошло – апостериорные вероятности.

Пусть в условиях предыдущего примера известно, что вытащен белый шар. Найти вероятность того, что шар вытащен из второй урны.

Элемент сигма-алгебры в дальнейшем будем называть случайным событием.

Полная группа событий

Полная группа событий это полная группа подмножеств, каждое из которых является событием. Говорят, что события полной группы это разбиение пространства элементарных исходов.

Конечно-аддитивная функция

Пусть A алгебра. Функция  , отображающая алгебру в множество действительных чисел

называется конечно-аддитивной, если для любого конечного набора попарно несовместных событий

Счетно-аддитивная функция

Пусть F – алгебра или сигма-алгебра. Функция

называется счетно-аддитивной, если она конечно-аддитивна и для любого счетного набора попарно несовместных событий

Мера - это неотрицательная счетно-аддитивная функция, определенная на сигма-алгебре, удовлетворяющая условию

Конечная мера

Мера называется конечной, если

Вероятность

Вероятность (вероятностная мера) P это мера такая, что

С этого момента мы перестанем измерять вероятность в процентах и начнем измерять ее действительными числами от 0 до 1.

называют вероятностью события A

Вероятностное пространство

Вероятностное пространство это совокупность трех объектов – пространства элементарных исходов, сигма-алгебры событий и вероятности.

Это и есть математическая модель случайного явления или объекта.

Парадокс определения вероятностного пространства

Вернемся к исходной постановке задачи теории вероятностей. Нашей целью было построение математической модели случайного явления, которая помогла бы количественно оценить вероятности случайных событий. В то же время для построения вероятностного пространства необходимо задать вероятность, т.е. вроде бы именно то, что мы ищем (?).

Разрешение этого парадокса в том, что для полного определения вероятности как функции на всех элементах F , обычно достаточно задать ее на лишь на некоторых событиях из F , вероятность которых нам легко определить, а затем, пользуясь ее счетной аддитивностью, вычислить на любом элементе F .

Независимые события

Важным понятием теории вероятностей является независимость.

События A и B называются независимыми, если

т.е. вероятность одновременного осуществления этих событий равна произведению их вероятностей.

События в счетном или конечном наборе называются независимыми попарно, если любая пара из них является парой независимых событий

В совокупности

События в счетном или конечном наборе называются независимыми в совокупности, если вероятность одновременного осуществления любого конечного поднабора из них равна произведению вероятностей событий этого поднабора.

Ясно, что независимые в совокупности события независимы и попарно. Обратное неверно.

Условная вероятность

Условной вероятностью события A при условии, что произошло событие B называется величина

Условную вероятность пока определим лишь для событий B, вероятность которых не равна нулю.

Если события A и B независимы, то

Свойства и теоремы

Простейшие свойства вероятности

Следует из того, что А и не-А противоположны и свойства конечной аддитивности вероятности

Вероятность противоположного события

Следует из того, что невозможное и достоверное события противоположны

Вероятность невозможного события

Следует из того, что

Монотонность вероятности

и в этом случае

Следует из того, что любое событие содержится в пространстве элементарных исходов

Ограниченность вероятности

Следует из представления

Вероятность объединения событий

Следует из предыдущего

Полуаддитивность вероятности

Следует из счетной аддитивности вероятности и определения полной группы событий

Вероятности полной группы событий

Сумма вероятностей полной группы событий равна 1.

Следует из счетной аддитивности вероятности, определения полной группы событий и определения условной вероятности

Формула полной вероятности

Если
… - полная группа событий, то для любого события A

Если вероятности всех событий полной группы больше нуля, то также

Следует из предудущей формулы и определения условной вероятности

Формула Байеса

Если
… - полная группа событий ненулевой вероятности, то для любого события A с ненулевой вероятностью